2022
DOI: 10.48550/arxiv.2210.17159
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks

Abstract: Aside from graph neural networks (GNNs) catching significant attention as a powerful framework revolutionizing graph representation learning, there has been an increasing demand for explaining GNN models. Although various explanation methods for GNNs have been developed, most studies have focused on instance-level explanations, which produce explanations tailored to a given graph instance. In our study, we propose Prototype-bAsed GNN-Explainer (PAGE), a novel model-level GNN explanation method that explains wh… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 24 publications
0
0
0
Order By: Relevance