We consider a new partial differential equation, of a similar form to the Camassa-Holm shallow water wave equation, which was recently obtained by Degasperis and Procesi using the method of asymptotic integrability. We prove the exact integrability of the new equation by constructing its Lax pair, and we explain its connection with a negative flow in the Kaup-Kupershmidt hierarchy via a reciprocal transformation. The infinite sequence of conserved quantities is derived together with a proposed bi-Hamiltonian structure. The equation admits exact solutions in the form of a superposition of multi-peakons, and we describe the integrable finite-dimensional peakon dynamics and compare it with the analogous results for Camassa-Holm peakons.