2003
DOI: 10.1007/bf02393237
|View full text |Cite
|
Sign up to set email alerts
|

Painlevé's problem and the semiadditivity of analytic capacity

Abstract: Let γ(E) be the analytic capacity of a compact set E and let γ+(E) be the capacity of E originated by Cauchy transforms of positive measures. In this paper we prove that γ(E) ≈ γ+(E) with estimates independent of E. As a corollary, we characterize removable singularities for bounded analytic functions in terms of curvature of measures, and we deduce that γ is semiadditive.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
202
0
13

Year Published

2009
2009
2012
2012

Publication Types

Select...
4
4

Relationship

1
7

Authors

Journals

citations
Cited by 256 publications
(217 citation statements)
references
References 32 publications
2
202
0
13
Order By: Relevance
“…As mentioned above, Christ's local Tb theorem (Theorem 4.1) was motivated in part by its connection with the theory of analytic capacity and the Painlevé problem, which was eventually solved in the remarkable work of Tolsa [88]. See also the earlier work of Mattila, Melnikov and Verdera [77], and David [41,42].…”
Section: Analytic Capacitymentioning
confidence: 99%
“…As mentioned above, Christ's local Tb theorem (Theorem 4.1) was motivated in part by its connection with the theory of analytic capacity and the Painlevé problem, which was eventually solved in the remarkable work of Tolsa [88]. See also the earlier work of Mattila, Melnikov and Verdera [77], and David [41,42].…”
Section: Analytic Capacitymentioning
confidence: 99%
“…Изучение множеств устранимых особенностей решений однородных эл-липтических уравнений и связанных с ними емкостей в различных классах функций (в основном классических: C m , L p , BM O и др.). Кроме цитируемых выше работ К. Толсы [47], [5] и [41] мы выделим ряд наиболее ярких (на наш взгляд) работ последних лет: [102]- [108], открывающих глубокие связи теории емкостей, геометрической теории меры и теории сингулярных интегралов. От-метим также работы [109], [110], в которых изучаются геометрические свойства некоторых емкостей, обсуждавшихся в связи с рассматриваемыми аппроксима-ционными задачами.…”
Section: дополнениеunclassified
“…(The converse direction is due to Garabedian and Calderón, see [Cal77], [Gar49].) The countable semiadditivity of analytic capacity, due to Tolsa [Tol03], implies that this result remains true if we only assume H 1 (E) to be σ-finite.…”
Section: Introductionmentioning
confidence: 95%