Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Latex polymers serve as binders in a wide range of architectural paints and coatings. A latex is an aqueous colloidal dispersion of polymer particles that when dried above the polymer's film formation temperature coalesces into a dry polymer film (Dragnevski, Routh, Murray, & Donald, 2010). The other main components of paint include associative thickeners, surfactants, pigments and fillers with the thickener being the primary area of focus for this study.The relatively simple system of latex, associative thickener and surfactant has been studied extensively. These studies have shown the mechanism of thickening for the associative thickener, and surfactant effects on both latex and thickener; however, there are few studies conducted for a fully-formulated system. The introduction of pigments, fillers, coalescing aids, functional amines, and other additives greatly increases the difficulty of research in this area. The addition of many additives ultimately affects the stability and physical properties of the end-product. Phase separation of the paints, also called syneresis, is a major concern of paint formulators because paints need to be as stable when left sitting in a paint-can for an extended period of time. The goal of this v project is to essentially probe the areas of phase separation for some hydrophobically modified ethoxylated urethane (HEUR) thickened paint systems that are very similar to commercially used paint formulations. The probing of these phase separated regions includes the careful preparation of each paint sample, physical property testing, as well as new experimental development in the area of syneresis, rheology, followed by statistical analysis of data.Dispersion phase diagrams (DPDs) were first reported by Kostansek (2003) in a simple system of HEUR thickener, surfactant, and latex. They are a plot of the three possible dispersion states for an associative thickened system. These states include bridging flocculation which occurs at low levels of HEUR in which 50% or less of the latex particle surface is covered by the associative thickener. The second state is a good dispersion, which does not show any signs of flocculation. The third state is a mode of flocculation called depletion flocculation that occurs when the particle surfaces of the system are covered mostly with surfactant. The free associative polymer in the system is excluded from the free space in between particles, and the latex particles form aggregates (Otsubo, 1995). The three dispersion phases are then plotted with wt% HEUR on the continuous phase versus wt% surfactant on the continuous phase. The ideal end product for this project would be to use various combinations of latex, surfactant, and associative thickeners (ATs) to create multiple DPDs, which then could be used to troubleshoot formulations and samples in which flocculation is present.Each formulation was made using a thickening package of two non-ionic HEURs: a lowshear and high-shear thickener. Surfactant additions were made after the HEUR in small incremental...
Latex polymers serve as binders in a wide range of architectural paints and coatings. A latex is an aqueous colloidal dispersion of polymer particles that when dried above the polymer's film formation temperature coalesces into a dry polymer film (Dragnevski, Routh, Murray, & Donald, 2010). The other main components of paint include associative thickeners, surfactants, pigments and fillers with the thickener being the primary area of focus for this study.The relatively simple system of latex, associative thickener and surfactant has been studied extensively. These studies have shown the mechanism of thickening for the associative thickener, and surfactant effects on both latex and thickener; however, there are few studies conducted for a fully-formulated system. The introduction of pigments, fillers, coalescing aids, functional amines, and other additives greatly increases the difficulty of research in this area. The addition of many additives ultimately affects the stability and physical properties of the end-product. Phase separation of the paints, also called syneresis, is a major concern of paint formulators because paints need to be as stable when left sitting in a paint-can for an extended period of time. The goal of this v project is to essentially probe the areas of phase separation for some hydrophobically modified ethoxylated urethane (HEUR) thickened paint systems that are very similar to commercially used paint formulations. The probing of these phase separated regions includes the careful preparation of each paint sample, physical property testing, as well as new experimental development in the area of syneresis, rheology, followed by statistical analysis of data.Dispersion phase diagrams (DPDs) were first reported by Kostansek (2003) in a simple system of HEUR thickener, surfactant, and latex. They are a plot of the three possible dispersion states for an associative thickened system. These states include bridging flocculation which occurs at low levels of HEUR in which 50% or less of the latex particle surface is covered by the associative thickener. The second state is a good dispersion, which does not show any signs of flocculation. The third state is a mode of flocculation called depletion flocculation that occurs when the particle surfaces of the system are covered mostly with surfactant. The free associative polymer in the system is excluded from the free space in between particles, and the latex particles form aggregates (Otsubo, 1995). The three dispersion phases are then plotted with wt% HEUR on the continuous phase versus wt% surfactant on the continuous phase. The ideal end product for this project would be to use various combinations of latex, surfactant, and associative thickeners (ATs) to create multiple DPDs, which then could be used to troubleshoot formulations and samples in which flocculation is present.Each formulation was made using a thickening package of two non-ionic HEURs: a lowshear and high-shear thickener. Surfactant additions were made after the HEUR in small incremental...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.