Bundles of paired helical filaments (PHF) accumulate in the pyramidal neurons that degenerate during Alzheimer's disease. This neurofibrillary degeneration is highly correlated with clinical signs of dementia. During the degenerating process, Tau proteins, which are the major antigenic components of PHF, are abnormally phosphorylated and two pathological isoforms named Tau 64 and 69 are expressed. We have studied their immunoblot distribution in the cortical gray and white matter from different regions of normal and Alzheimer brains, to determine if the degenerating process preferentially affects the somatodendritic or the axonal domain. Two categories of antibodies were used. The first category consisted of anti-human native Tau, anti-Tau proteins from different vertebrates, anti-PHF, monoclonal antibody Alz-50 and an anti-C terminal repeated region of Tau. In control brains, these antibodies strongly detected normal Tau proteins in the gray matter while Tau immunodetection was weak in the white matter. In Alzheimer brain cortices, each antibody detected Tau 64 and 69 in gray matter extracts but not at all in white matter extracts. The second category of anti-Tau consisted of the anti-PHF saturated with normal brain protein extracts. This antiserum only probed the abnormally phosphorylated Tau proteins. It detected Tau 64 and 69 exclusively in the cortical gray matter of Alzheimer brains. Moreover, a 55-kDa Tau protein was also immunolabelled, which might be an intermediary form between normal Tau and Tau 64 and 69. Our results demonstrate that Tau proteins are normal and major components of the somatodendritic domain and that Tau pathology, reflected by the presence of Tau 64 and 69, affects preferentially this domain during Alzheimer's disease.