Pairing effects in non-uniform nuclear matter, surrounded by electrons, are studied in the protoneutron star early stage and in other conditions. The so-called nuclear pasta phases at sub saturation densities are solved in a Wigner-Seitz cell, within the Thomas-Fermi approximation. The solution of this problem is important for the understanding of the physics of a newly born neutron star after a supernova explosion. It is shown that the pasta phase is more stable than uniform nuclear matter on some conditions and the pairing force relevance is studied in the determination of these stable phases.