The reassembling of severely damaged tangible heritage is a primordial task for archaeologists who not only aim to further study the past but also to preserve ruined ancient monuments. As a consequence, various researchers have proposed methods to automatically solve this problem by computing and matching geometric properties of counterpart fragments. Although their results are quite promising, experts still carry out this task manually by finding relationships between distinctive matching cues, such as type of decoration, remaining traces, inscriptions’ content, etc. The topic itself poses challenges to both automatic and manual approaches due to the high level of damage ancient broken fragments have undergone over the centuries. Therefore, this paper proposes a Puzzling Engine that combines crucial elements of automatic and manual methodologies to empower experts with registration tools for reassembling fragmented heritage. Unlike similar hybrid human-computer puzzling engines, our approach is capable of automatically proposing matches and rough alignments solely based on the geometry of fractured surfaces. Based on these initial solutions and a set of registration tools, experts can accurately solve the puzzle. The virtual environment has been used and verified to find pairwise puzzle-pieces of actual antique wall decorated fragments, resulting in new discoveries that experts could not have come up with by utilizing classic techniques. Concretely, the contributions are twofold, (i) a feature-based registration pipeline that is able to suggest both matches and alignments to the user and (ii) a virtual interface that integrates automatic and user-assisted techniques to accurately puzzle fragmented surfaces.