The Nordic Seas are a key region for global ocean circulation, crucial in water mass exchange between the North Atlantic and the Arctic oceans, and deepwater formation. The advection of Atlantic Water (AW) to the Nordic Seas is decisive for the oceanography and climate of the region and beyond. Here, we present a set of sedimentary records, including two new cores from the western Nordic Seas to reconstruct the history of AW routing in the Nordic Seas over the Holocene. Our results show that the early Holocene (11.7–8 ka BP) thermal maximum, caused by an ‘overshoot’ of overturning circulation and high insolation, was limited to the eastern Nordic Seas, while the western part remained cold due to the meltwater blocking the spreading of AW. After 8 ka BP, the retreat of the freshwater lid allowed AW to reach the central Greenland Sea, where deep convection developed. After 5 ka BP, the increase in sea-ice export from the Arctic strengthened deep convection, which intensified the westward AW flow. A disruption of convectional activity around 2.7 ka BP, triggered by a minimum in solar activity, caused cooling and expansion of sea ice in the Nordic Seas and might have contributed to a global climatic deterioration. The overturning circulation in the Nordic Seas did not recover to its previous state until the present. We demonstrate that the rate of AW advection into the Nordic Seas alone is not enough to understand the oceanographic evolution of this area and its influence on regional or even global ocean and climate changes. The shifts in AW routing within the Nordic Seas and the rate of deep convection are also important.