Understanding the volcanic processes operating during continental break-up is hampered by the subsequent burial of the majority of the volcanic pile beneath thick sedimentary sequences currently located in bathymetrically deep offshore regions. Although portions of these volcanic systems are currently exposed on land, a full understanding of the volcanic structure, the eruptive styles and their evolution is not possible as these localities have been partially eroded. Furthermore, as the onshore exposure represents a volumetrically minor part of the entire system, the documented eruptive styles may not be representative. The increasing availability of 3D seismic reflection data has the potential to significantly enhance our understanding of break-up related volcanism, as it allows direct access to detailed information from the buried volcanic succession. However, conventional seismic interpretation methodologies cannot determine lava flow morphologies, and as a result, eruptive styles and their evolution are still largely based on extrapolation from the accessible onshore outcrop data. New 3D seismic volume visualisation techniques allow the buried basalt morphologies to be examined for the first time in a manner similar to outcrop, aerial photographic or satellite-based observations. Applying this new approach for 3D seismic data to the North Rockall Trough, U.K. Atlantic margin, demonstrates that a range of volcanic features indicative of eruptive style can be determined. The data reveal a complex terrain containing lava flows originating from discrete volcanic centres, contemporaneous normal faults, linear fissures a few kilometres long, radial fissures and inflation ridges. Lava flow morphologies that are indicative of tube-fed inflated sheetflows, intracanyon flows and elongate subaerial flows that enter water downslope to produce a large hyaloclastite delta are observed.