To reconstruct the paleoposition of the Antarctic Peninsula relative to the South American Plate during the breakup of Gondwana, as well as the opening kinematics of the Drake Passage, we conducted detailed paleomagnetic, rock magnetic, and isotopic chronology studies of Byers Peninsula (Livingston Island) and Fildes Peninsula (King George Island) of the South Shetland Islands. The 40Ar/39Ar ages of the Agate Beach Formation to the Long Hill Formation in Fildes Peninsula range from 56.38 ± 0.2 Ma to 52.42 ± 0.19 Ma. Low natural remanent magnetization/isothermal remanent magnetization ratios, inconsistency with the polarity constrained by the paleomagnetic results and 40Ar/39Ar age constraints, as well as the widespread cation‐deficient titanomagnetite and Ti‐free magnetite of secondary origin, indicate that the volcanic and sedimentary rocks of Fildes Peninsula were remagnetized at about 55 Ma. Combining our results with previous data from the South Shetland Islands and the Antarctic Peninsula, we calculated the paleopoles for 110 Ma and 55 Ma for the South Shetland Islands and the Antarctic Peninsula. The paleomagnetic reconstruction of the relative paleoposition of the Antarctic Peninsula and South America shows that these plates were connected and experienced a southward movement and clockwise rotation from 110 to 55 Ma. Subsequently, southward translation and clockwise rotation of the Antarctic Peninsula between 55 and 27 Ma separated the Antarctic Peninsula and South America, forming the Drake Passage. Northward translation of South America after 27 Ma increased the N‐S divergence and increased the distance between the Antarctic Peninsula and the South American Plate.