Tethyan evolution is characterized by cyclical continent-transfer from Gondwana to the continents in the Northern Hemisphere, similar to a "one-way" train. Subduction has been viewed as the primary driver of transference. Therefore, it is crucial to understand the tectonic evolution of all past subduction zones that occurred along Eurasia's southern margin. We studied the earliest known eclogite located at the Neo-Tethyan suture in the Iranian segment. A prograde-E-MORB-like eclogite reached a peak metamorphic condition of 2.2 GPa and 560°C, at 190 ± 11 Ma (1? rutile U-Pb ages), which constrains the youngest age for subduction initiation of the Neo-Tethyan slab. Combined with regional magmatic and structural data, the oldest age for Neo-Tethys subduction initiation is 210-192 Ma, which is younger than the Paleo-Tethyan closure time of 228-209 Ma. These data, used with previous numerical modeling, supports collision-induced subduction initiation. The collision-induced force, together with the Paleo-Tethyan subduction driven-mantle flow, is likely to have exploited weak inherited structures from earlier Neo-Tethyan rifting, resulting in a northward directed subduction zone along the southern margin of Central Iran Block.