Sediment cores from 30 low-alkalinity lakes in northern New England (NE), New York (NY), the northern Great Lakes States (NGLS) of Minnesota, Michigan, and Wisconsin, and Florida (FL) have been dated by 21~ and analyzed for water and organic content, eight major elements (A1, Ti, Fe, Mn, Ca, Mg, Na, K) plus four trace metals (Pb, Zn, Cu, and V). Variations in the percentages of major elements through time are dominated by long-term independent variations in the abundance of SiO2, FeO, and to a lesser extent Ca and A1. Additional variations are caused by varying proportions of inorganic matter. Major variations in chemistry are generally unrelated to documented disturbances in the watersheds; most disturbances are minor fires or selective logging.Accelerated accumulation of Pb from atmospheric sources into sediment first occurs in sediment dated between 1800 and 1850 in NY and NE, slightly later in the NGLS region, and about 1900 in FL. Modem accumulation rates in all areas are comparable (ca. 1 to 4 #g cm -2 yr-1). Accumulation rates of Pb in some lakes have declined significantly from 1975 to 1985. Atmospheric deposition of anthropogenic Zn and Cu is also indicated by generally increasing accumulation rates in sediment cores, but the record is not as clear nor are chemical profiles in all lakes parallel to the trends in atmospheric emissions inferred on the basis of fossil fuel consumption, smelting, and other industrial activities. Inter-lake variations in profiles of Cu and Zn are large. Vanadium accumulation rates increase by the 1940s in NY and NE, but not until the 1950s in the NGLS region. This timing correlates with regional trends in the combustion of fuel oil, a major source of atmospheric V.Acidification of some of the lakes is suggested by decreases in the concentration and accumulation rates of Mn, Ca, and Zn in recent sediment, relative to other elements of catchment origin. The decreases generally occur slightly before the onset of acidification as indicated by diatoms. Increased sediment accumulation rates for Fe may indicate the acidification of watershed soils. The use of the accumulation rate of TiO2 as an indicator of rates of erosion and for normalization of trace metal accumulation rates is in question for lakes where the flux of TiO2 from the atmosphere varies and is a significant fraction of the total flux of TiO2 to the sediment.