Abstract:The aseismic Palawan microcontinental block is an oceanic bathymetric high that has collided with the seismically-active Philippine Mobile Belt since the Early Miocene. Consequently, tectonic microblocks immediately north (Luzon) and south (Western Visayas Block) of the collision front rotated in opposite senses. The rotation led the microblocks to onramp adjacent strike-slip faults, and converted these to subduction zones, namely, the current Manila and Negros Trenches. In addition, the collision also initiated the southward propagation of a major left-lateral strike slip fault, the Philippine Fault Zone, and the Philippine Trench, which bounds the Philippine archipelago along its eastern boundary. Based on onshore and offshore data, the Philippine Fault Zone and the East Luzon Trough -Philippine Trench appears to also propagate northward. Furthermore, the opposite direction of propagation is also noted for the Manila and Negros Trenches from the locus of the collision in the Central Philippines to their northern and southern extensions, respectively. The ages of initiation of the Manila Trench (Early Miocene), Philippine Fault Zone (Middle Miocene) and Philippine Trench (Pliocene) as encountered along a west to east transect in the Central Philippines are consistent with the collision and subsequent indentation of Palawan with the rest of the Philippine Mobile Belt.