Anhydroerythritol (AnEryt) shares some of its ligand properties with furanosides and furanoses. Its bonding to silicon centers of coordination number four, five, and six was studied by X-ray and NMR methods, and compared to silicon bonding of related compounds. Diphenyl(cycloalkylenedioxy)silanes show various degrees of oligomerization depending on the diol component involved. For example, Ph(2)Si(cis-ChxdH(-2)) (1) and Ph(2)Si[(R,R)-trans-ChxdH(-2))] (2; Chxd = cyclohexanediol) are dimeric, Ph(2)Si(AnErytH(-2)) (3) is monomeric, and Ph(2)Si(L-AnThreH(-2)) (4; AnThre = anhydrothreitol) is trimeric both in the solid state and in solution. Ph(2)Si(cis-CptdH(-2)) (5) (Cptd = cyclopentanediol) is monomeric in solution but dimerizes on crystallization. Si(AnErytH(-2))(2) (6) and Si(cis-CptdH(-2))(2) (7) are monomeric spiro compounds in solution but are pentacoordinate dimers in the crystalline state. Pentacoordinate silicate ions are found in A[Si(OH)(AnErytH(-2))(2)] (A = Na, 8 a; Rb, 8 b; Cs, 8 c). Related compounds are formed by substitution of the hydroxo by a phenyl ligand. K[SiPh(AnErytH(-2))(2)]1/2 MeOH (9) is a prototypical example as it shows the two most significant isomers in one crystal structure: the syn/anti and the anti/anti form (syn and anti define the oxolane ring orientation close to, or apart from, the monodentate ligand, respectively). syn/anti Isomerism generally rules the appearance of the NMR spectra of pentacoordinate silicates of furanos(id)e ligands. NMR spectroscopic data are presented for various pentacoordinate bis(diolato)silicates of adenosine, cytidine, methyl-beta-D-ribofuranoside, and ribose. In even more basic solutions, hexacoordinate silicates are enriched. Preliminary X-ray analyses are presented for Cs(2)[Si(CydH(-2))(3)] 21.5 H(2)O (10) and Cs(2)[Si(cis-InsH(-3))] cis-Ins8 H(2)O (11) (Cyd = cytidine, Ins = inositol).