The polytetrafluoroethylene (PTFE), which was implanted with Ni ion to different energy and doses, fabricated metallic structures by selective electroless copper plating. The characteristic and microstructure of the copper film were studied using SEM and X-ray diffraction. Friction performance of the interface between copper film and basal body of PTFE was tested with a CETR UMT-2 (CETR Co., Campbell, CA, USA) multifunction micromechanics instrument. The test loads were 10, 20 and 40 N, while the line velocity was 8 mm s 21 , and the frequency of data acquisition was 1 Hz. The Ni ion implantation replaces the complicated electroless plating surface pretreatment, and it is an assisted technique of electroless plating of copper on the surface of PTFE and plate Cu directly on its surface. Continuous, prepressing and uniformity plating was obtained with proper technique parameters and the dosage of Ni z . The frictional performance comprehensive property of copper film was remarkably influenced by different plating methods, annealing treatment and testing loads under unlubricated condition. The friction coefficients and wear rates changed with the varied load. Annealing treatment improves the tightness and uniformity of the copper film, while it decreases its cavity. Friction performance of copper film was thus increased. The mechanisms of friction and wear of copper film under different test conditions are also discussed.