Abstract. Biadgligne A, Gobezie T, Mohammed A, Feleke E. 2022. Estimation of carbon stock and emission of community forests in Eastern Amhara, Ethiopia. Asian J For 6: 74-82. Carbon emission resulting from deforestation and forest degradation contributes to climate change. Halting deforestation is, therefore, one strategy to mitigate the changing climate. As the global carbon market develops, an opportunity to halt deforestation can be contributed by community forests as a win-win solution for climate change mitigation and livelihood provision, yet knowing the carbon stock of the forest is important to enhance the bargaining power of the community to get carbon finance. Thus, a case study was conducted to quantify carbon stocks and emissions from three community forests (i.e., Asha-Guba, Jemely, and Beshilo) in Eastern Amhara, Ethiopia. Stratified systematic sample quadrate methods were used, and a total of 57 equally spaced nested square quadrats were laid for the measurement of carbon density. Carbon pools, including above-ground living biomass, dead wood, surface litter, belowground root biomass, soil organic carbon, and harvested wood product, were accounted for the estimation of site-level carbon density (t ha-1) and carbon dioxide equivalent (CO2e) emission. There was high variability in the estimated mean carbon density and CO2e emission across the three community forests. The highest carbon density was recorded in the Asha-Guba community forest with 124.27 ± 8.29 t ha-1, followed by Jemely and Beshilo forests with 91.24 ± 3.18 t ha-1 and 73.55 ± 3.13 t ha-1, respectively. The largest proportion (59-63%) of carbon was stored in the soil pool, followed by the above-ground biomass (27-32%), while that in dead organic matter was insignificant. The community forests currently stored total carbon stocks of 57,612.14 ± 13.81ton (210,860.43 CO2e). To ensure the sustainable management of the forests, long-term finance and investment must be introduced urgently.