Ribbed mussels, Geukensia demissa, are marsh fauna that are used in coastal management and restoration due to the ecosystem services they provide. Ribbed mussel restoration efforts may be improved with a greater understanding of the environmental drivers of ribbed mussel distribution at multiple spatial scales to predict areas where restoration could be successful. This study sought to estimate the effects of within-marsh (4 m) and landscape (500 m) factors on ribbed mussel distribution. Ribbed mussel densities were surveyed at 11 sites along the coast of Georgia, USA, and overlaid with spatial data for within-marsh factors (elevation, distance to marsh features, slope) as well as landscape factors (percent cover by subtidal creek, forest, and development within a 500-m radius). The distribution model was then validated using three previously unsurveyed marshes and explained 55% of the variance in ribbed mussel abundance. Ribbed mussel abundances and occupancy were most sensitive to changes in within-marsh factors (elevation and distance to subtidal creeks, bodies of water inundated during the full tidal cycle) but were also sensitive to landscape features (percent landcover of forests and development). The highest ribbed mussel densities were found in mid-elevation areas (~ 0.7 m NAVD88), far from subtidal creeks, and in marshes surrounded with forest and development. These results contrast with distributions in the northeastern USA, where ribbed mussels are distributed along subtidal creek banks. This work suggests that restoration may be most effective when focused on appropriate elevations and at locations away from the marsh-creek ecotone.