Stabilizing materials were prepared by different ratios of attapulgite/humic acid composites, and the optimum proportion for the remediation of Cd-polluted soils was found. The results suggested that the bioavailability of Cd in soil was decreased by the application of material prepared with humic acid and attapulgite in a ratio of 1:5. CaCl2-Cd, diethylenetriaminepentaacetic acid (DTPA-Cd) and the toxicity characteristic leaching procedure (TCLP-Cd) were reduced by 34.03%, 26.62% and 43.66%, and the ecological risk was depressed accordingly. The addition of stabilizing materials could transform the acid-soluble and reducible speciation to residue speciation, with a ratio of 1:5, significantly increasing the residue proportion of Cd in soil. The content of the residue state was increased by 63.13%, and the content of the acid-soluble state was significantly decreased by 34.10% compared with the control. The bioavailability, acid-soluble and reducible speciation of Cd had a highly negative correlation with the growth of corn, and the accumulation of Cd in corn had a significantly negative correlation with the residue speciation. Attapulgite/humic acid composites can reduce the bioavailability and increase the ratio of residue Cd in soil effectively, and they have the potential to remediate the pollution of heavy metals in soil.