With the rapid increase of network users and services, the breadth and depth of Internet have greatly changed. The mismatch between current network requirements and original network architecture design has spurred the evolution or revolution of Internet to remedy this gap. Lots of research projects on future network architecture have been launched, in which Universal Identifier Network (UIN) architecture that is based on the identifier/location separation, access/core separation and control/forwarding separation can provide better mobility, security and reliability. On the other hand, the demand of group communication has increased due to the fine-grained network services and successive booming of new applications such as IoT (Internet of Things). Most of current multicast schemes are based on the open group model with open group membership (multicast only care the multicast group state, not the group member) and open access to send/receive multicast data, which are beneficial to multicast routing for its simplification. However, the open group membership makes the group member management difficult to be realized, and open access may result in lots of security vulnerabilities such as Denial of service (DoS), eavesdropping and masquerading, which make deployment more difficult. Therefore, in this paper we propose a Central-Controllable and Secure Multicast (CCSM) system based on the UIN architecture, and redesign the multicast service procedures including registration, join/leave, multicast routing construction and update with objective to achieve better mobility support, security, scalability and controllable. More specifically, we design a new group management scheme to perform the multicast members join/leave with authentication and a central-controllable multicast routing scheme to provide a secure way to set up multicast entries on routers. The CCSM inherits the characteristics of UIN in terms of mobility and security, and it can provide the centralized multicast routing computation and distributes the multicast routing into forwarders. We compare CCSM with Protocol Independent Multicast-Sparse Mode (PIM-SM), and the results show that CCSM reduces the multicast join delay, and performs better than PIM-SM in term of reconstruction cost under low multicast density.