Current malaria rapid diagnostic tests (RDTs) contain antibodies against Plasmodium falciparum-specific histidine-rich protein 2 (PfHRP2), Plasmodium lactate dehydrogenase (pLDH), and aldolase in various combinations. Low or high parasite densities/target antigen concentrations may influence the accuracy and sensitivity of PfHRP2-detecting RDTs. We analyzed the SD Bioline Malaria Ag P.f/Pan RDT performance in relation to P. falciparum parasitemia in Madagascar, where clinical Plasmodium vivax malaria exists alongside P. falciparum. Nine hundred sixty-three samples from patients seeking care for suspected malaria infection were analyzed by RDT, microscopy, and Plasmodium species-specific, ligase detection reaction-fluorescent microsphere assay (LDR-FMA). Plasmodium infection positivity by these diagnostics was 47.9%, 46.9%, and 58%, respectively. Plasmodium falciparum-only infections were predominant (microscopy, 45.7%; LDR-FMA, 52.3%). In all, 16.3% of P. falciparum, 70% of P. vivax, and all of Plasmodium malariae, Plasmodium ovale, and mixed-species infections were submicroscopic. In 423 P. falciparum mono-infections, confirmed by microscopy and LDR-FMA, the parasitemia in those who were positive for both the PfHRP2 and pan-pLDH test bands was significantly higher than that in those who were positive only for the PfHRP2 band (P < 0.0001). Plasmodium falciparum parasitemia in those that were detected as P. falciparum-only infections by microscopy but P. falciparum mixed infections by LDR-FMA also showed similar outcome by the RDT band positivity. In addition, we used varying parasitemia (3-0.0001%) of the laboratory-maintained 3D7 strain to validate this observation. A positive pLDH band in high P. falciparum-parasitemic individuals may complicate diagnosis and treatment, particularly when the microscopy is inconclusive for P. vivax, and the two infections require different treatments.