Lilies (genus: Lilium) play a significant role in the global cut-flower industry, but they are highly susceptible to Fusarium wilt caused by Fusarium oxysporum. However, Lilium regale, a wild lily species, exhibits remarkable resistance to F. oxysporum. To investigate the quantitative resistance of L. regale to Fusarium wilt, a comprehensive multi-omics analysis was conducted. Upon inoculation with F. oxysporum, L. regale roots showed a significant accumulation of phenylpropane metabolites, including lignin precursors, flavonoids, and hydroxycinnamic acids. These findings were consistent with the up-regulated expression of phenylpropanoid biosynthesis-related genes encoding various enzymes, as revealed by transcriptomics and proteomics analyses. Furthermore, metabolomics and proteomics data demonstrated differential activation of monoterpenoid and isoquinoline alkaloid biosynthesis. Colorimetry and high-performance liquid chromatography analyses revealed significantly higher levels of total flavonoids, lignin, ferulic acid, phlorizin, and quercetin contents in L. regale scales compared to susceptible lily ‘Siberia’ scales during F. oxysporum infection. These phenylpropanes exhibited inhibitory effects on F. oxysporum growth and suppressed the expression of pathogenicity-related genes. Transcriptional regulatory network analysis suggested that ethylene-responsive transcription factors (ERFs) may positively regulate phenylpropanoid biosynthesis. Therefore, LrERF4 was cloned and transiently overexpressed in the Fusarium wilt-susceptible Oriental hybrid lily, ‘Siberia’. The overexpression of LrERF4 resulted in increased levels of total flavonoids, lignin, ferulic acid, phlorizin, and quercetin, while the silencing of LrERF4 in L. regale through RNAi had opposite effect. In conclusion, phenylpropanoid metabolism plays a crucial role in the defense response of L. regale against Fusarium wilt, with LrERF4 acting as a positive regulator of phenylpropane biosynthesis.