Abstract. Pancreatic cancer is the eighth-leading cause of cancer-associated mortality in males and the ninth-leading cause in females worldwide. Even when diagnosed early enough to be potentially resectable, the prognosis of invasive pancreatic cancer is poor. Galectin-9 (Gal-9) is a tandem-repeat type galectin that has recently been demonstrated to possess an anti-proliferative effect on cancer cells. Therefore, the present study evaluated the effects of Gal-9 on the proliferation of human pancreatic cancer cells and examined the microRNAs that are associated with the antitumor effects of Gal-9. Gal-9 suppressed the proliferation of multiple pancreatic cancer cell lines. In addition, Gal-9 treatment increased the levels of caspase-cleaved keratin 18 and the expression of cytochrome c in pancreatic cancer cell lines. This data suggests that Gal-9 induces intrinsic apoptosis in pancreatic cancer cell lines through the caspase-dependent and caspase-independent pathways. In addition, Gal-9 reduced the expression levels of phosphorylated epidermal growth factor receptor and numerous receptor tyrosine kinases (RTKs). In conclusion, Gal-9 may suppress the growth of human pancreatic cancer cells in vitro. These findings suggest that Gal-9 may be a new therapeutic agent for the treatment of pancreatic cancer.