Objectives
Pancreatic reg I has been implicated in cellular differentiation. Acinar cells can transdifferentiate into other pancreatic-derived cells, and we postulated that changes in intracellular levels of reg I would affect the state of differentiation.
Methods
We transfected AR42J cells with a plasmid containing the entire coding sequence of reg I, and isolated clones with cDNA in sense (SS) or antisense (AS) orientation. Levels of mRNA and protein expression were examined by Western blotting and Real Time-PCR.
Results
Expression of reg I was confirmed in sense or antisense clones. AR42J transfected with SS demonstrated more acinar-like phenotype while those transfected with AS showed a less differentiated state. Specifically, amylase mRNA and protein levels increased in SS cells while AS cells showed increased PDX-1 and insulin mRNAs and cytokeratin protein. Conversely, cytokeratin and PDX-1 were depressed in SS cells.
Conclusions
These data demonstrate that in acinar cells, reg I over-expression is linked to acinar cell differentiation, while inhibition of reg I leads to beta-cell and possibly ductal phenotype. Reg I expression in acinar cells is important in maintaining pancreatic cell lineage, and when decreased, cells can de-differentiate and move towards becoming other pancreatic cells.