More and more evidence suggests that puerarin, a potential remedy for gut inflammation, may have an ameliorative effect on sleep disturbances. However, the relationship between puerarin and sleep disruption has not been extensively researched. This study aims to explore the role and mechanisms of puerarin in improving sleep disorders. We established a light-induced sleep disorder model in mice and assessed the effects of puerarin on cognitive behavior using open field and water maze tests. Pathological detection demonstrated that sleep disturbances resulted in observable damage to the liver, lung, and kidney. Puerarin reversed multi-organ damage and inflammation. Further, puerarin activated paneth cells, resulting in increased lysozyme and TGF-β production, and stimulating intestinal stem cell proliferation. Puerarin also effectively inhibited the expression of F4/80, iNOS, TNF-α, and IL-1β in the small intestine, while it increased Chil3, CD206, and Arg-1 levels. Moreover, puerarin treatment significantly decreased P-P65, TLR4, Bcl-xl, and cleaved caspase-3 protein levels while increasing barrier protein levels, including ZO-1, Occludin, Claudin 1 and E-cadherin suggesting a reduction in inflammation and apoptosis in the gut. Overall, puerarin diminished systemic inflammation, particularly intestinal inflammation, and enhanced intestinal barrier integrity in mice with sleep disorders. Our findings suggest a potential new therapeutic pathway for sleep disorders.
Graphical Abstract