Generally, smart devices, such as smartphones, smartwatches, or fitness trackers, communicate with each other indirectly, via cloud data centers. Sharing sensor data with a cloud data center as intermediary invokes transmission methods with high battery costs, such as 4G LTE or WiFi. By sharing sensor information locally and without intermediaries, we can use other transmission methods with low energy cost, such as Bluetooth or BLE. In this paper, we introduce Sense Low Energy (SenseLE), a decentralized sensing framework which exploits the spatial locality of nearby sensors to save energy in Internet-of-Things (IoT) environments. We demonstrate the usability of SenseLE by building a real-life application for estimating waiting times at queues. Furthermore, we evaluate the performance and resource utilization of our SenseLE Android implementation for different sensing scenarios. Our empirical evaluation shows that by exploiting spatial locality, SenseLE is able to reduce application response times (latency) by up to 74% and energy consumption by up to 56%.