Silicon photonics has become a commonly used paradigm for on-chip interconnects to meet the requirements of higher bandwidth in computationally intensive applications for manycore processors. Design of an optical switch is a vital aspect while constructing an optical NoC topology which influences the performance of network. We present a HoneyComb optimized reconfigurable optical switch (HCROS), a 6 × 6 non-blocking optical switch where optimized reconfiguration of optical links utilizing the states of basic 2 × 2 optical switching elements (OSE) was achieved while keeping the input-output (I/O) interconnection intact. The proposed 6-port HCROS architecture was further optimized to reduce the number of OSEs to minimize overall power consumption. We proposed a generic algorithm to find the optimal switching combination of OSEs for a particular I/O link to minimize the insertion loss and power consumption. In comparison to other non-blocking architectures, a maximum of 66% reduction in OSEs was observed for the optimized HCROS, which consumes only 12 OSEs. Simulations were performed for all 720 I/O links in different configurations to evaluate the power consumption and insertion loss. We observed up to 92% power savings in the case of optimized HCROS as compared to un-optimized HCROS, and a 79% minimization in insertion loss was also reported as a result of optimization.