Whole Slide Images (WSI) are widely used in histopathology for research and the diagnosis of different types of cancer. The preparation and digitization of histological tissues leads to the introduction of artifacts and variations that need to be addressed before the tissues are analyzed. WSI preprocessing can significantly improve the performance of computational pathology systems and is often used to facilitate human or machine analysis. Color processing techniques are usually the main concern, while other areas are frequently ignored. In this paper, we present a detailed study of the state-of-the-art in three different areas of WSI preprocessing: Artifacts detection, color variation, and the emerging field of pathology-specific data augmentation. We include a summary of evaluation techniques along with a discussion of possible limitations and future research directions for new methods.