Recently, research all over the world is being carried out to develop eco‐friendly supercapacitors (SCs) using biopolymeric materials like proteins or polysaccharides. These polymers offer these innovative energy storage devices' sustainability and recyclability, flexibility, lightweight, and steady cycling performance—all crucial for utilizations involving wearable electronics and others. Given its abundance and extensive recycling behavior, cellulose is one of the most sustainable natural polymers requiring special attention. The paper discusses the various types of cellulose‐based materials (CBMs), including nanocellulose, cellulose derivatives, and composites, as well as their synthesis methods and electrochemical properties. The review also highlights the performance of CBMs in SC applications, including their capacitance, cycling stability, and rate capability, along with recent advances in modifying the materials, such as surface modification and hybrid materials. Finally, the proposed topic is concluded with the current challenges and future prospects of CBMs for SC applications.