The impact of bone marrow mesenchymal stem cells (BMSCs) on the behaviors of papillary thyroid carcinoma (PTC) cells and LncRNAs remains poorly understood. This study mainly explores the mechanism of LncRNA-GAS5-modified BMSCs on the behaviors of PTC cells, aiming to further elucidate
PTC carcinogenesis and provide evidence for drug development. PTC cell lines were assigned into blank group, BMSCs group (co-culture with BMSCs), GAS5 group (co-culture with LncRNA-GAS5-modified BMSCs) and positive control group (cultured in the presence of 60 μg/mL β-elemene)
followed by analysis of LncRNA-GAS5 expression, the number of migrating and invading PTC cells, the quantity of EMT-related markers, MMP-9 and MMP-2. LncRNA-GAS5 level was lowest in the blank group, while highest in the GAS5 group (P <0.05), followed by positive control group and
BMSCs group. Moreover, the number of migrated and invaded cells was highest in the blank group, while lowest in GAS5 group (P < 0.05), followed by positive control group and BMSCs group. PTC cells exhibited the highest expression of EMT-related markers (N-cadherin and Vimentin) and
MMPs but lowest E-cadherin level in blank group and positive control group. These proteins showed an opposite trend in GAS5 group and BMSCs group. Additionally, a more remarkable difference was recorded in the GAS5 group (P <0.05). LncRNA-GAS5-modified BMSCs can down-regulate Vimentin
and N-cadherin while up-regulate E-cadherin, thereby restraining the expression of MMP-9 and MMP-2. In this way, the EMT process can be manipulated, leading to inhibition of PTC cells behaviors by LncRNA-GAS5-modified BMSCs, indicating that LncRNA-GAS5 might be applied as a therapeutic target
for PTC.