A b s t r a c tNaproxen is a one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) entering the environment as a result of high consumption. For this reason, there is an emerging need to recognize mechanisms of its degradation and enzymes engaged in this process. Planococcus sp. S5 is a gram positive strain able to degrade naproxen in monosubstrate culture (27%). However, naproxen is not a sufficient growth substrate for this strain. In the presence of benzoate, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid or vanillic acid as growth substrates, the degradation of 21.5%, 71.71%, 14.75% and 8.16% of naproxen was observed respectively. It was shown that the activity of monooxygenase, hydroxyquinol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxyegnase in strain S5 was induced after growth of the strain with naproxen and 4-hydroxybenzoate. Moreover, in the presence of naproxen activity of gentisate 1,2-dioxygenase, enzyme engaged in 4-hydroxybenzoate metabolism, was completely inhibited. The obtained results suggest that monooxygenase and hydroxyquinol 1,2-dioxygenase are the main enzymes in naproxen degradation by Planococcus sp. S5.
178acid produced by Prunus domestica, Melissa officinalis or Vitis vinifera or vanillic acid identified in Juglans regia or Chenopodium murales (Ghareib et al., 2010;Kakkar and Bais, 2014). The objective of our study is to examine the ability of Planococcus sp. S5 to degrade naproxen in either mono-or disubstrate cultures with plant aromatic compounds as growth substrates. Plano coccus sp. S5 was chosen for this study since it degrades salicylate (Łabużek et al., 2003), which is not only the intermediate of naphthalene degradation and mimetic of naproxen, but also belongs to non-steroidal antiinflammatory drugs. Additionally, the aim of this study is to identify enzymes engaged in naproxen degradation by Planococcus sp. S5 in cometabolic conditions.
Experimental
Materials and MethodsMedia and culture conditions. Planococcus sp. S5 was routinely cultivated in BBL nutrient broth at 30°C and 130 rpm for 24 hours. Then 6 mg/l naproxen was added to the culture. After 48 hours, cells were harvested by centrifugation (5.000 × g at 4°C for 15 min), washed with fresh sterile medium and used as inoculum. Degradation of naproxen in a monosubstrate, as well as cometabolic systems, was performed in 500 ml Erlenmeyer flasks containing 250 ml of the mineral salts medium (Greń et al., 2010) inoculated with cells to a final optical density of about 1.5 and 0.5 at λ = 600 nm (OD600) for the monosubstrate and cometabolic systems, respectively. For degradation experiments two control cultures were prepared. The uninoculated control (I) consisted of 250 ml of sterile mineral salts medium, while the heatkilled control (II) consisted of 250 ml of autoclaved culture prepared under conditions identical to those of the experimental cultures. Naproxen was added to each flask to obtain a final concentration of 6 mg/l, and all cultures were incubated with shakin...