Abstract:Para-Ricci-like solitons with arbitrary potential on para-Sasakilike Riemannian Π-manifolds are introduced and studied. For the studied soliton, it is proved that its Ricci tensor is a constant multiple of the vertical component of both metrics. Thus, the corresponding scalar curvatures of both considered metrics are equal and constant. An explicit example of the Lie group as the manifold under study is presented.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.