For classical Lie superalgebras of type I, we provide necessary and sufficient conditions for a Verma supermodule
$\Delta (\lambda )$
to be such that every nonzero homomorphism from another Verma supermodule to
$\Delta (\lambda )$
is injective. This is applied to describe the socle of the cokernel of an inclusion of Verma supermodules over the periplectic Lie superalgebras
$\mathfrak {pe} (n)$
and, furthermore, to reduce the problem of description of
$\mathrm {Ext}^1_{\mathcal O}(L(\mu ),\Delta (\lambda ))$
for
$\mathfrak {pe} (n)$
to the similar problem for the Lie algebra
$\mathfrak {gl}(n)$
. Additionally, we study the projective and injective dimensions of structural supermodules in parabolic category
$\mathcal O^{\mathfrak {p}}$
for classical Lie superalgebras. In particular, we completely determine these dimensions for structural supermodules over the periplectic Lie superalgebra
$\mathfrak {pe} (n)$
and the orthosymplectic Lie superalgebra
$\mathfrak {osp}(2|2n)$
.