A series of laboratory experiments was conducted to obtain high-quality data for acoustic propagation in shallow water waveguides with sloping elastic bottoms. Accurate modeling of transmission loss in these waveguides can be performed with the variable rotated parabolic equation method. Results from an earlier experiment with a flat or sloped slab of polyvinyl chloride (PVC) demonstrated the necessity of accounting for elasticity in the bottom and the ability of the model to produce benchmark-quality agreement with experimental data [J. M. Collis et al., J. Acoust. Soc. Am. 122, 1987-1993 (2007)]. This paper presents results of a second experiment, using two PVC slabs joined at an angle to create a waveguide with variable bottom slope. Acoustic transmissions over the 100-300 kHz band were received on synthetic horizontal arrays for two source positions. The PVC slabs were oriented to produce three different simulated waveguides: flat bottom followed by downslope, upslope followed by flat bottom, and upslope followed by downslope. Parabolic equation solutions for treating variable slopes are benchmarked against the data.