A review of recent advances in spacetime optics is given, with special emphasis on time refraction. This is a basic optical process, occurring at a temporal discontinuity or temporal boundary, which is able to produce various different effects, such as frequency shifts, energy amplification, time reflection, and photon emission. If, instead of a single discontinuity, we have two reverse temporal boundaries, we can form a temporal beam splitter, where temporal interferences can occur. It will also be shown that, in the presence of an axis of symmetry, such as a magnetic field, the temporal beam splitter can induce a rotation of the initial polarization state, similar to a Faraday rotation. Recent work on time crystals, superluminal fronts, and superfluid light will be reviewed. Time gates based on spacetime optical effects will be discussed. We also mention recent work on optical metamaterials. Finally, the quantum properties of time refraction, which imply the emission of photon from vacuum, are considered, while similar problems in high-energy QED associated with electron–positron pairs are briefly mentioned.