In this paper we investigate a technique for fusing approximate knowledge obtained from distributed, heterogeneous information sources. We use a generalization of rough sets and relations [14], which depends on allowing arbitrary similarity relations. The starting point of this research is [2], where a framework for knowledge fusion in multi-agent systems is introduced. Agent's individual perceptual capabilities are represented by similarity relations, further aggregated to express joint capabilities of teams. This aggregation, allowing a shift from individual to social level, has been formalized by means of dynamic logic. The approach of [2] uses the full propositional dynamic logic, not guaranteeing the tractability of reasoning. Therefore the results of [11,12,13] are adapted to provide a technical engine for tractable approximate database querying restricted to a Horn fragment of serial PDL. We also show that the obtained formalism is quite powerful in applications.