karyocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptorassociated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor,  receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function.receptors; megakaryocytopoiesis; thrombocytopoiesis; hematopoiesis; microarray MEGAKARYOCYTOPOIESIS INVOLVES the proliferation and differentiation of hematopoietic stem cells to form megakaryocyte (MK) progenitors that undergo a maturation process that culminates in a release of ϳ10 11 platelets per day into the blood circulation (31). This process is tightly regulated by a number of factors, which include extracellular cues such as cytokines, cell-to-cell interactions, and cell-to-extracellular matrix interactions. Among cytokines that are known to act as important extracellular regulators of megakaryocytopoiesis is the main physiological stimulator of this specific cell-lineage commitment, thrombopoietin (TPO) (17). Additionally, interleukin 3 (IL3), interleukin 6 (IL6), interleukin 11 (IL11), stem cell factor (SCF), and fms-like tyrosine kinase 3 ligand act as positive regulators of MK development (17, 31). There are also several cytokines such as transforming growth factor-beta (TGF-), platelet factor 4, and interleukin 4 (IL4) that are documented as negative regulators of MK development (31).The importance of megakaryocytopoiesis and platelet biogenesis is apparent; morbidit...