2009
DOI: 10.3182/20090706-3-fr-2004.00283
|View full text |Cite
|
Sign up to set email alerts
|

Parafac-based Blind Identification of Convolutive MIMO Linear Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
9
0
1

Year Published

2010
2010
2018
2018

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 8 publications
(10 citation statements)
references
References 20 publications
0
9
0
1
Order By: Relevance
“…5). Convolutive extensions of this type of ICA wherein a block-Hankel structure arises in the factor matrices corresponding to the first three modes of the cumulant and first mode of the covariance matrix have also been proposed [14]. A different approach to ICA identifies the mixing matrix by computing several time-lagged covariance matrices and fusing them with a joint factorization [15], [16].…”
mentioning
confidence: 99%
“…5). Convolutive extensions of this type of ICA wherein a block-Hankel structure arises in the factor matrices corresponding to the first three modes of the cumulant and first mode of the covariance matrix have also been proposed [14]. A different approach to ICA identifies the mixing matrix by computing several time-lagged covariance matrices and fusing them with a joint factorization [15], [16].…”
mentioning
confidence: 99%
“…-La séparation aveugle de sources, appelée aussi identification aveugle de mélanges instantanés ou convolutifs, sous-déterminés ou sur-déterminés, sujet qui depuis les travaux de pionnier de (Cardoso, 1990), (Cardoso, 1991) a donné lieu au développement de très nombreuses méthodes basées sur l'utilisation de tenseurs de statistiques (cumulants ou multispectres) d'ordre quatre (Ferréol et al, 2005), (Acar et al, 2006), (de Lathauwer et al, 2007), (Fernandes et al, 2008), (Fernandes et al, 2009b) ou d'ordre plus élevé (Albera et al, 2004), (Karfoul et al, 2008), (Yu et al, 2008).…”
Section: Resultsunclassified
“…In this paper, we focus on high-order CPD models [5]. Such models have a great interest in signal processing for blind equalization [7], [4], blind source separation [16], radar [10], wireless communications [12], [3], among many other fields of application. Most methods of factor estimation are ALS-based techniques [2].…”
Section: Introductionmentioning
confidence: 99%