Determining the grade of glioma is a critical step in choosing patients' treatment plans in clinical practices. The pathological diagnosis of patient's glioma samples requires extensive staining and imaging procedures, which are expensive and timeconsuming. Current advanced uniform-width-constriction-channelbased microfluidics have proven to be effective in distinguishing cancer cells from normal tissues, such as breast cancer, ovarian cancer, prostate cancer, etc. However, the uniform-width-constriction channels can result in low yields on glioma cells with irregular morphologies and high heterogeneity. In this research, we presented an innovative cyclic conical constricted (CCC) microfluidic device to better differentiate glioma cells from normal glial cells. Compared with the widely used uniform-width-constriction microchannels, the new CCC configuration forces single cells to deform gradually and obtains the biophysical attributes from each deformation. The human-derived glioma cell lines U-87 and U-251, as well as the human-derived normal glial astrocyte cell line HA-1800 were selected as the proof of concept. The results showed that CCC channels can effectively obtain the biomechanical characteristics of different 12−25 μm glial cell lines. The patient glioma samples with WHO grades II, III, and IV were tested by CCC channels and compared between Elastic Net (ENet) and Lasso analysis. The results demonstrated that CCC channels and the ENet can successfully select critical biomechanical parameters to differentiate the grades of single-glioma cells. This CCC device can be potentially further applied to the extensive family of brain tumors at the single-cell level.