The basics of focused transport as applied to solar energetic particles are reviewed, paying special attention to areas of common misconception. The micro-physics of charged particles interacting with slab turbulence are investigated to illustrate the concept of pitch-angle scattering, where after the distribution function and focused transport equation are introduced as theoretical tools to describe the transport processes and it is discussed how observable quantities can be calculated from the distribution function. In particular, two approximations, the diffusion-advection and the telegraph equation, are compared in simplified situations to the full solution of the focused transport equation describing particle motion along a magnetic field line. It is shown that these approximations are insufficient to capture the complexity of the physical processes involved. To overcome such limitations, a finite-difference model, which is open for use by the public, is introduced to solve the focused transport equation. The use of the model is briefly discussed and it is shown how the model can be applied to reproduce an observed solar energetic electron event, providing insights into the acceleration and transport processes involved. Past work and literature on the application of these concepts are also reviewed, starting with the most basic models and building up to more complex models.