2009
DOI: 10.1007/s00158-009-0411-3
|View full text |Cite
|
Sign up to set email alerts
|

Parallel boundary and best neighbor searching sampling algorithm for drawbead design optimization in sheet metal forming

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
16
0
2

Year Published

2011
2011
2016
2016

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 37 publications
(18 citation statements)
references
References 19 publications
0
16
0
2
Order By: Relevance
“…Similarly, a risk of wrinkling can be assumed if an element lies in the wrinkling region. Unlike previous studies (Wang et al 2008;Wang et al 2009a;Wang et al 2010), the risk of both wrinkling and tearing were evaluated according to the following two constraints (Kitayama et al 2012): For tearing: x 1…”
Section: Evaluation Of Wrinkling and Tearing Using Forming Limit Diagrammentioning
confidence: 99%
See 1 more Smart Citation
“…Similarly, a risk of wrinkling can be assumed if an element lies in the wrinkling region. Unlike previous studies (Wang et al 2008;Wang et al 2009a;Wang et al 2010), the risk of both wrinkling and tearing were evaluated according to the following two constraints (Kitayama et al 2012): For tearing: x 1…”
Section: Evaluation Of Wrinkling and Tearing Using Forming Limit Diagrammentioning
confidence: 99%
“…Design optimization using the SAO for drawbead forces can be found in Refs. (Breitkopf et al 2005;Jansson et al 2003;Liu & Yang 2008;Sun et al 2011;Wang et al 2009a;Wang et al 2010), in which note that a constant BHF is used. Optimization of VBHF trajectory using the SAO is recognized as an attractive and crucial approach for successful sheet metal forming in industry (Kitayama et al 2013;Wang et al 2008), but the practical application is rarely reported.…”
Section: Introductionmentioning
confidence: 99%
“…Thus, the objective of the VBHF approach is to find the VBHF trajectory through the punch stroke. The VBHF approaches can be roughly classified into two categories: One is based on the closed-loop type algorithm and the other is the response surface method (RSM) (7)(8)(9)(10)(11)(12) . The authors have already proposed both approaches for avoiding these defects, and the detailed procedures can be found in Refs.…”
Section: Introductionmentioning
confidence: 99%
“…Under such situations, the RSM is one of the practical approaches. A sequential approximate optimization (SAO) is recently used for improving the accuracy of the response surface (8)(9)(10)(11)(12) . In the SAO, the response surface is constructed repeatedly by adding new sampling points until terminal criteria are satisfied.…”
Section: Introductionmentioning
confidence: 99%
“…,これらは本来,制約条件として扱う ほうが自然である. (P2) 複数の目的関数を設定し,線形加重和法を用いて,単一目的関数の最小化問題に変換している (10,14,(16)(17)(18)(19) . 線形加重和法における重みの決定について,何ら指針が得られておらず,一組の重みを設定して最適化 を終了している.重みに関する有効な知見,すなわち,目的関数間のトレードオフ関係について,何ら 言及されていない. (P3) 多くの研究では,複数存在する目的関数の応答曲面作成において,二次多項式近似が基本となっており, 交互作用等に関する注意が払われていない (10)(11)(12)(13)(14)(15)(16)20) .近年,Kriging や Support Vector Machine を用いた研究 が報告されているが (17)(18)(19) ,BHF の大きさを求める研究であり,VBHF の最適軌道を求める研究ではない. (P4) 逐次近似最適化のアプローチが取られている研究も行われているが (10,12,15,16) ,これらの研究では,応答曲 面の最適解のみを追加してゆく Zooming 法である …”
unclassified