The amount of data generated on the internet grows every day at a high rate. This rate of data generation requires rapid processing. The MapReduce technique is applied for distributed computing of huge data, whose main idea is job parallelization. The MapReduce algorithm deals with two important tasks, namely Map and Reduce. Initially, the Map includes a set of data, which is broken down into tuples (key/value pairs). Secondly, reduce task takes the map output as an input whereby Reducers run the tasks. Job clustering can determine an allocation of jobs to the reducers and mappers. In recent years, this method has been used frequently for job allocation in MapReduce for shortening the execution time of big data processing [1].