2013
DOI: 10.1049/iet-spr.2012.0262
|View full text |Cite
|
Sign up to set email alerts
|

Parallel computing for efficient time‐frequency feature extraction of power quality disturbances

Abstract: Fast signal processing implementation techniques for detection and classification of power quality (PQ) disturbances are the need of the hour. Hence in this work, a parallel computing approach has been proposed to speed up the feature extraction of PQ signals to facilitate rapid building of classifier models. Considering that the Fourier, the one-dimensional discrete wavelet, the time-time and the Stockwell transforms have been used extensively to extract pertinent time-frequency features from nonstationary an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
10
0
3

Year Published

2014
2014
2020
2020

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(13 citation statements)
references
References 20 publications
0
10
0
3
Order By: Relevance
“…The performance constraint for sequential watermarking process can be categorized into two problems: capacity and capability. The capacity problem occurred when the existing hardware and software are unable to perform the anticipated computations in an estimated time [18]. For example, it may not be feasible to conduct watermarking process on a large data size of DICOM files in any reasonable manner.…”
Section: Discussionmentioning
confidence: 99%
“…The performance constraint for sequential watermarking process can be categorized into two problems: capacity and capability. The capacity problem occurred when the existing hardware and software are unable to perform the anticipated computations in an estimated time [18]. For example, it may not be feasible to conduct watermarking process on a large data size of DICOM files in any reasonable manner.…”
Section: Discussionmentioning
confidence: 99%
“…Today we have a lot of parallelization tools and multi-core computing platforms, such as MPI and OpenMP. Mathwork's Matlab Distributed Computing Server and Parallel Computing Toolbox [17][18] provide an efficient new way of using multi-core processors, which have a good scalability to enhance the speed of parallelism and data processing of large dataset in parallel. When faced with large datasets, we can combine Matlab Parallel Computing Toolbox and Matlab Distributed Computing Server to improve the scalability.…”
Section: Related Workmentioning
confidence: 99%
“…�a bilinen gorev paralelligi, bir uygulamanm yfiriitUlmesmm uzun zaman aldlgl yogun hesaplamalarda bu uygulamanm bagunslz hesaplama par<;alarml e�zamanh olarak farkh i�lemcilerde ger<;ekle�tirebilen paralel bir geli�tirme yaplsldlf. Veri paralelligi ise bUyUk boyutlu veri takllllianyia c;:ah�mada veri dizisinin farkh klsLmlarma e�zamanh olarak uygulanan aym i�lemleri ifade etmektedir [3,8]. …”
Section: Paralel Hesaplamaunclassified
“…Mevcut donamm ve yazlhmlar hesaplama a<;lSlndan yeterli olsalar bile ger<;ek-zamanh uygulamalar i<;in hesaplama sureleri kabul edilebil� silielerin iizer0�e ger<;ekle�mektedir. Boyle problem len yok etmek I<;m yapllacak tUm i� daha kii<;uk par<;alara aynlarak para�el hesaplama yontemleri ile hem bellek ve kapaslte problemleri olmadan hem de daha klsa siirelerde ger<;ekle�tirilebilmektedir[3].Tarasiuk[4], DFT, Aynk Dalgactk Donii�ilmii (DWT) ve Dalgaclk Paket Donii�umii (WPT) algoritm � lannm hesaplama surelerini sadece u<;gen ve kare dalga slllyaller iizerinde incelemi� bu sinyaller iizerinde DWT' nin daha klsa siirelerde ger<;ekle�tigini belirtmi�tir. Gherasirn, Driesen ve Belmans[5] ise FFT, DWT ve WPT algoritmalanm hem siire hem de dogruluk baktmmdan inceleyerek FFT' nin ger<;ek-zamanh uygulamalarda kullallllabilecek �ekilde dogru sonu<;lar verdigini ve klsa siliede ger<;ekle�tirildigini belirtmi�lerdir.…”
unclassified
See 1 more Smart Citation