The continuity of power supply to users is considered to be one of the main problems in the design and implementation of low-voltage smart microgrid configurations. Switching to the backup power supply, when using two frequency converters, one of which is alternately maintained in cold reserve, is presented. Switching to the backup power supply, in the case of low-voltage symmetrical smart microgrids, is another highlighted aspect. In the case of modern residential buildings, the automatic switching is necessary between two or more types of users, critical and noncritical ones to the available sources, like the public grid, photovoltaic panels, power generator, etc. Also, in this study, the implementation of smart power microgrids, featuring auto-reconfiguration, is proposed. It is considered the conversion of the public grids to active (distribution/using) smart power microgrids, which have the autoconfiguration option and use high-tech smart devices, like recloser type. Thus, the faults and contingencies will be limited or even removed, creating the frame for the supplied equipment (in a continuously increasing number due to the local and regional expansion) to operate until the removal of the fault.