Bacterial symbioses are significant drivers of insect evolutionary ecology. However, despite recent findings that these associations can emerge from environmentally derived bacterial precursors, there is still little information on how these potential progenitors of insect symbionts circulates in the trophic systems. The aphid symbiont Serratia symbiotica represents a valuable model for deciphering evolutionary scenarios of bacterial acquisition by insects, as its diversity includes intracellular host-dependent strains as well as gut-associated strains that have retained some ability to live independently of their hosts and circulate in plant phloem sap. These strains represent a potential reservoir for the emergence of new and more intimate symbioses. Here, we conducted a field study to examine the distribution and diversity of S. symbiotica found in aphid populations, as well as in different compartments of their surrounding environment. A total of 250 aphid colonies, 203 associated insects, and 161 plant samples associated with aphid colonies were screened for S. symbiotica. Twenty percent of aphids were infected with S. symbiotica, and the symbiont includes a wide diversity of strains with varied tissue tropism corresponding to different lifestyle. We also showed that the prevalence of S. symbiotica is influenced by seasonal temperatures. For the first time, we found that S. symbiotica was present in non aphid species and in host plants, and that the prevalence of the bacterium in these samples was higher when associated aphid colonies were infected. Furthermore, phylogenetic analyses suggest the existence of horizontal transfers between the different trophic levels examined. These results provide a completely new picture of the ubiquity of an insect symbiont in nature. They suggest that ecological interactions promote the dissemination of strains that are still free-living and poorly specialized, and for which plants are a proabable reservoir for the acquisition of new bacterial partners in insects.