2014
DOI: 10.1142/s1469026814500084
|View full text |Cite
|
Sign up to set email alerts
|

Parallel Hybrid Metaheuristic on Shared Memory System for Real-Time Uav Path Planning

Abstract: In this paper, we present a parallel hybrid metaheuristic that combines the strengths of the particle swarm optimization (PSO) and the genetic algorithm (GA) to produce an improved path-planner algorithm for fixed wing unmanned aerial vehicles (UAVs). The proposed solution uses a multi-objective cost function we developed and generates in real-time feasible and quasi-optimal trajectories in complex 3D environments. Our parallel hybrid algorithm simulates multiple GA populations and PSO swarms in parallel while… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0

Year Published

2015
2015
2022
2022

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 16 publications
(9 citation statements)
references
References 13 publications
0
9
0
Order By: Relevance
“…28). Only 28% of the surveyed papers (Zheng et al 2003;Cocaud 2006;Allaire et al 2009;Guo et al 2009;Swartzentruber et al 2010;Chen et al 2011;Wan et al 2011;Holub et al 2012;Yan et al 2012;Ozalp and Sahingoz 2013;Roberge et al 2013Roberge et al , 2014Q. Wang et al 2014;Zhan et al 2014;Gardi et al 2015a;Ling and Hao 2015;Wen et al 2015) considered both 3D terrain and obstacle avoidance; these are the ones for which we will further analyze the flyability.…”
Section: D Terrain Collision and No-fly Zone Criteriamentioning
confidence: 99%
See 4 more Smart Citations
“…28). Only 28% of the surveyed papers (Zheng et al 2003;Cocaud 2006;Allaire et al 2009;Guo et al 2009;Swartzentruber et al 2010;Chen et al 2011;Wan et al 2011;Holub et al 2012;Yan et al 2012;Ozalp and Sahingoz 2013;Roberge et al 2013Roberge et al , 2014Q. Wang et al 2014;Zhan et al 2014;Gardi et al 2015a;Ling and Hao 2015;Wen et al 2015) considered both 3D terrain and obstacle avoidance; these are the ones for which we will further analyze the flyability.…”
Section: D Terrain Collision and No-fly Zone Criteriamentioning
confidence: 99%
“…1. Roberge et al (2013Roberge et al ( , 2014 presented a UAV trajectory optimization method that used a cost function, which employed the 3D arcs of circles and helical curves trajectory smoothing technique for which Labonté (2012Labonté ( , 2015Labonté ( , 2016Labonté ( , 2017aLabonté ( , 2017b provided the equations for computing both the power and the fuel requirements of the UAV trajectory. These works will be taken as a reference point for the rest of our analysis.…”
Section: Power and Fuel Criteriamentioning
confidence: 99%
See 3 more Smart Citations