2023
DOI: 10.48550/arxiv.2302.09376
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Parameter Averaging for SGD Stabilizes the Implicit Bias towards Flat Regions

Abstract: Stochastic gradient descent is a workhorse for training deep neural networks due to its excellent generalization performance. Several studies demonstrated this success is attributed to the implicit bias of the method that prefers a flat minimum and developed new methods based on this perspective. Recently, Izmailov et al. (2018) empirically observed that an averaged stochastic gradient descent with a large step size can bring out the implicit bias more effectively and can converge more stably to a flat minim… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?