2018
DOI: 10.1016/j.jappgeo.2017.12.016
|View full text |Cite
|
Sign up to set email alerts
|

Parameter estimation by Differential Search Algorithm from horizontal loop electromagnetic (HLEM) data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
7
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 20 publications
(8 citation statements)
references
References 54 publications
0
7
0
1
Order By: Relevance
“…These parameters are vital for the success of the optimization and their selection depends on the nature of the problem under consideration. Therefore, parameter tuning studies should be performed before the parameter estimations performed by global optimization algorithms (Fernandez-Martinez et al, 2010;Pekşen et al, 2014;Ekinci et al, 2016Ekinci et al, , 2017Balkaya et al, 2017;Alkan and Balkaya, 2018) even though they are time-consuming (Eiben and Smith, 2011).…”
Section: Tuning and Parameter Estimations Through Synthetic Datamentioning
confidence: 99%
See 1 more Smart Citation
“…These parameters are vital for the success of the optimization and their selection depends on the nature of the problem under consideration. Therefore, parameter tuning studies should be performed before the parameter estimations performed by global optimization algorithms (Fernandez-Martinez et al, 2010;Pekşen et al, 2014;Ekinci et al, 2016Ekinci et al, , 2017Balkaya et al, 2017;Alkan and Balkaya, 2018) even though they are time-consuming (Eiben and Smith, 2011).…”
Section: Tuning and Parameter Estimations Through Synthetic Datamentioning
confidence: 99%
“…the nonuniqueness and ill-posedness phenomena, noise content, and also the insufficient number of observed data, inversion techniques are generally successfully used in geophysical parameter estimation studies with the help of some constraints and prior information. While improving the cost/error/objective function, which is the indicator of the fitness between the observed and the calculated geophysical data, the global minimum is searched in a model space using either a global optimization or a local optimization technique (Gallardo and Meju, 2004;Tarantola, 2005;Ekinci, 2008;Ekinci and Demirci, 2008;Fernández-Martínez et al, 2010;Mehanee et al, 2011;Göktürkler and Balkaya, 2012;Biswas and Sharma, 2014;Mehanee and Essa, 2015;Alkan and Balkaya, 2018). Gradient-based local optimization techniques are known to be faster in terms of convergence rates and computational cost, but their success strongly depends on the initial guess, which should be in the close neighborhood of the global minimum (Menke, 1989;Chunduru et al, 1997;Başokur et al, 2007;Ekinci and Demirci, 2008;Maiti et al, 2011;Ogunbo, 2018).…”
mentioning
confidence: 99%
“…b. Remarkably, nature-inspired derivative-free metaheuristic algorithms have been effectively applied with proper modifications, including particle swarm optimization (PSO), genetic algorithm (GA), differential evolution (DE), differential search (DS), simulated-annealing (SA), ant-colony optimization (ACO), gravitational search algorithm (GSA), bat algorithm (BA), manta-ray foraging (MRF) optimization (Balkaya et [44][45][46][47][48][49][50][51][52] [15] [53,54] . However, in general, the correctness and accuracy of the results obtained by the aforementioned interpretation techniques depend on the precision by which the anomaly of the source structure/s is extracted from the entire measured information.…”
Section: Introductionmentioning
confidence: 99%
“…Literatürde sıklıkla kullanılan metasezgisel yöntemler genetik algoritma-GA [4], yapay ısıl işlem-YIİ [5], parçacık sürü optimizasyonu-PSO [6], farksal evrim-FE [7][8][9] olarak örneklendirilebilir. Jeofizikte parametre kestirim çalışmalarında yaygın olarak kullanılan algoritmalara ise GA [10][11][12], PSO [13][14][15][16][17][18][19], FE [2,3,[19][20][21][22][23][24], YIİ algoritması [25][26][27][28][29] farksal arama algoritması [30,31] örnek olarak verilebilir. Parametre kestirim çalışmalarında uygulanan güncel algoritmalara örnekler ise gri kurt optimizasyonu [32] geri-izleme arama optimizasyonu [33], guguk kuşu arama algoritması [34] olarak verilebilir.…”
Section: Introductionunclassified