2023
DOI: 10.1098/rsos.230275
|View full text |Cite
|
Sign up to set email alerts
|

Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler

Abstract: In this work, we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However, in many practical problems, only data at the aggregate level is available and as a result the likelihood function is not available, which poses a challenge for Bayesian methods. In particular, we consider the situation where the distri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?