This paper uses Fractional-order PID control (FOPID) to control the speed of the DC motor. FOPID is more flexible and confident in controlling control higher-order systems compared to classical PID. In this work, the FOPID controller tuning is carried out using different methods ranging from classical techniques to most recent heuristic methods are Fractional Grey wolf Optimization and Nelder-Mead. Moreover, parameter estimation of real-world DC motor is carried out experimentally using Matlab/Simulink interfaced to an Arduino Uno board. The feasibility of FOPID is demonstrated through applications to well-known DC motor case study and the estimated DC motor. Based on ISE, ITE, and ISTE performance measures, the proposed approach provide less settling time, rise time and comparable overshoot compared with existing literature approaches. A robustness assessment with differences in the DC motor components is performed. Simulation finding provide validation of the suggested work and the FOPID controller effectiveness as compared to classical PID controller in terms of robustness and control effect.