2015
DOI: 10.12988/ams.2015.54329
|View full text |Cite
|
Sign up to set email alerts
|

Parameter estimation of geographically weigthed multivariate Poisson regression

Abstract: Geographically Weighted Multivariate Poisson Regression (GWMPR) is a statistical technique on spatial data which is used to modelling of relationships between two or more response variables (Poisson distribution) and one or more independent variables. The underlying idea of GWMPR model is that for each estimator of the regression parameters depend on the location where the data are observed. The locations is expressed as a point coordinate in two-dimensional geographic space (latitude and longitude). In this p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
5
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 9 publications
0
5
0
2
Order By: Relevance
“…Penaksiran parameter GPR dilakukan dengan metode MLE (Maximum Likelihood Estimation) [17]. Pengujian signifikansi parameter terdiri dari dua jenis pengujian yakni serentak maupun parsial [18]. Pengujian signifikansi parameter secara serentak dilakukan dengan menggunakan metode Maximum Likelihood Ratio Test (MLRT).…”
Section: G Model Generalized Poisson (Gpr)unclassified
See 1 more Smart Citation
“…Penaksiran parameter GPR dilakukan dengan metode MLE (Maximum Likelihood Estimation) [17]. Pengujian signifikansi parameter terdiri dari dua jenis pengujian yakni serentak maupun parsial [18]. Pengujian signifikansi parameter secara serentak dilakukan dengan menggunakan metode Maximum Likelihood Ratio Test (MLRT).…”
Section: G Model Generalized Poisson (Gpr)unclassified
“…Langkah ketiga adalah memaksimumkan fungsi ln-likelihood model GWGPR dengan menambahkan pembobot geografis di masing -masing lokasi yang ditunjukkan oleh persamaan (18).…”
Section: H Model Geographically Weighted Generalized Poisson Regressi...unclassified
“…The form and properties of the estimated errors variance-covariance parameters of the MGWR model using the MLE and weighted least squares methods were investigated [3]. Triyanto et al [4,5] introduced the geographically weighted multivariate Poisson regression (GWMPR) model. The estimator of the GWMPR model parameters was obtained through the MLE with the Newton-Raphson iterative method, and the test statistic for hypothesis tests was determined by the MLRT method.…”
Section: Introductionmentioning
confidence: 99%
“…The GWMLR model in this study is used to explain the spatial associations between two correlated categorical dependent variables with one or more independent variables, where each of the dependent variables has two categories. Similar to the methods in the works of Harini et al [2], Triyanto et al [4,5], Suyitno et al [6], and Sifriyani et al [8], the MLE and MLRT methods were used in the modeling and applying of the GWMLR model. The MLE method was used to estimate the parameters, and the statistical test for the significance of the parameters was determined by the MLRT method.…”
Section: Introductionmentioning
confidence: 99%
“…e advantage of this approach is the absence of variable dimension constraints. Referring to [4], Triyanto et al [6] discussed the parameter estimation of the Geographically Weighted Multivariate Poisson Regression (GWMPR) model using the Maximum Likelihood Estimation (MLE) methods. e GWMPR is used to model the spatial data with response variables that are distributed Poisson.…”
Section: Introductionmentioning
confidence: 99%